Identification of a two-component regulatory pathway essential for Mn(II) oxidation in Pseudomonas putida GB-1.

نویسندگان

  • Kati Geszvain
  • Bradley M Tebo
چکیده

Bacterial manganese(II) oxidation has a profound impact on the biogeochemical cycling of Mn and the availability of the trace metals adsorbed to the surfaces of solid Mn(III, IV) oxides. The Mn(II) oxidase enzyme was tentatively identified in Pseudomonas putida GB-1 via transposon mutagenesis: the mutant strain GB-1-007, which fails to oxidize Mn(II), harbors a transposon insertion in the gene cumA. cumA encodes a putative multicopper oxidase (MCO), a class of enzymes implicated in Mn(II) oxidation in other bacterial species. However, we show here that an in-frame deletion of cumA did not affect Mn(II) oxidation. Through complementation analysis of the oxidation defect in GB-1-007 with a cosmid library and subsequent sequencing of candidate genes we show the causative mutation to be a frameshift within the mnxS1 gene that encodes a putative sensor histidine kinase. The frameshift mutation results in a truncated protein lacking the kinase domain. Multicopy expression of mnxS1 restored Mn(II) oxidation to GB-1-007 and in-frame deletion of mnxS1 resulted in a loss of oxidation in the wild-type strain. These results clearly demonstrated that the oxidation defect of GB-1-007 is due to disruption of mnxS1, not cumA::Tn5, and that CumA is not the Mn(II) oxidase. mnxS1 is located upstream of a second sensor histidine kinase gene, mnxS2, and a response regulator gene, mnxR. In-frame deletions of each of these genes also led to the loss of Mn(II) oxidation. Therefore, we conclude that the MnxS1/MnxS2/MnxR two-component regulatory pathway is essential for Mn(II) oxidation in P. putida GB-1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manganese (Mn) Oxidation Increases Intracellular Mn in Pseudomonas putida GB-1

Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or ...

متن کامل

Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1

When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides...

متن کامل

Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1

Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium that produces pyoverdine-type siderophores (PVDs), which facilitate the uptake of Fe(III) but also influence MnO2 formation. Recently, a non-ribosomal peptide synthetase mutant that does not synthesize PVD was described. Here we identified a gene encoding the PVDGB-1 (PVD produced by strain GB-1) uptake receptor (PputGB1_4082) of strain GB...

متن کامل

The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1.

A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn...

متن کامل

cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains.

A multicopper oxidase gene, cumA, required for Mn(II) oxidation was recently identified in Pseudomonas putida strain GB-1. In the present study, degenerate primers based on the putative copper-binding regions of the cumA gene product were used to PCR amplify cumA gene sequences from a variety of Pseudomonas strains, including both Mn(II)-oxidizing and non-Mn(II)-oxidizing strains. The presence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 76 4  شماره 

صفحات  -

تاریخ انتشار 2010